CHEMISTRY 121 FINAL EXAM

Record your answers on the machine readable answer sheet provided. Scratch work is to be done on the paper provided with the examination instructions. **DO NOT MAKE ANY MARKS ON THIS EXAMINATION BOOK.**

QUESTIONS 1-50 COUNT ONE POINT EACH.

1.	a) 1 miceb) 1 megc) 1 milld) 1 nand	he following roliter = 1 x sagram = 1 x imeter = 1 x ogram = 1 x imeter = 1 x	10 ⁻⁹ 10 ⁹ 10 ⁻³	grams meters grams	correc	t?				
2.				ong several measur	emen	its of the same quan	ity is	called It ref	lects	the reproducibility of a
	a) accura	of measurem	b)	error	c)	precision	d)	significance	e)	certainty
3.	How many	significant f	igure	s are there in the m	umbe	r 0.03220?				
	a) 2		b)	3	c)	4	d)	5	e)	6
4.	a) it will b) it will c) it will d) the mi e) none o	float on top. sink to the b mix so you d ixture will im of these thing	ottor can't prov s wil	n. see it. e the running of the l happen.	e mot					
5.	contains a		of po	at involving scattering sitive charge is: Lord Kelvin	g of a			led him to conclude William Thomson		the nucleus of an atom John Dalton
6.	,		com	plete atomic symbol	ŕ		d)	39K	e)	14N
7.	40/Ca ²⁺ has		U)	17.01	O)	13.1	u)	174	0)	011
	b) 22 pro c) 20 pro	otons, 20 neu otons, 22 neu	trons trons	, and 18 electrons , and 20 electrons , and 18 electrons , and 18 electrons						
8.	a) Ions ab) Ions ac) Ions ad) An ion	re formed by re formed by	addi char remove or	ng electrons to a ne aging the number of oving electrons fron negative charge.	fprot	ons in an atom's nu	cleus.			
9.	How many a) 2	oxygen aton	ns are b)	e there in one formu 4	ıla un c)	oit of $Ca_3(PO_4)_2$?	d)	8	e)	none of these
10.	Which of the a) Coppe			ncorrectly paired? Silver, Ag	c)	Iron, Fe	d)	Lead, Pb	e)	Sodium, Na
11.		t name for Harv(I) ion		s:	c)	mercury(II) ion	d)	hydrogen ion	e)	hydrogen(II) ion

12.	All (a) (b) (c) (d) (e)	of the following are $HC_2H_3O_2$, acetic ac HBr, bromic acid H_2SO_3 , sulfurous a HNO ₂ , nitrous acid HClO ₃ , chloric acid	cid cid l	queous solution.	Which i	s incorrect	y named?				
13.	The a) b) c) d) e)	correct formula for SnSO ₄ Sn(SO ₄) ₂ TiSO ₄ Ti(SO ₄) ₂ TiS ₈	tin(I	II) sulfate is:							
14.	The	nucleus of an atom	of 11	² In contains:							
	a)b)c)d)e)	49 protons, 63 neu 49 protons, 49 neu 49 protons, 49 alph 49 protons, 63 neu 49 protons, 112 ne	trons 1a pa trons	rticles							
15.		w many moles of hy 2.16 mol		en sulfide are co 1.03 mol		in a 35.0-g s 7.43 mol		s gas? 10.4 mol	e)	6.97 mol	
16.	Wha	at is the coefficient					s balanced?				
	a)	3	b)	$^{3}_{6} + O_{2} \longrightarrow$	c)	7	d)	12	e)	14	
17.	mol	e empirical formula lar mass of lindane i 2		0.8. How many		f carbon doe		of lindane co			The
18.		0.0-g sample of HF		ssolved in water 3.0 M		2.0 x 10 ² m 0.10 M		The concentre 5.0 M	ration of the e)	solution is: 10. M	
19.		hemist needs 225 m 3.4 mL		2.4 M HCl. WI 7.2 mL		ne of 12 M 21 mL		dissolved in v 6.8 mL	water to forn e)	n this solution? 45 mL	
20.		ich of the following HF		strong acid? HC ₂ H ₃ O ₂	c)	HCl	d)	HClO	e)	HBrO	
21.		which of the followin HNO ₃	_	es nitrogen have NO_2	e an oxid c)	lation state on N ₂ O	of +4?	NH ₄ Cl	e)	NaNO ₂	
22.	In the a) b) c) d) e)	the reaction 2Cs + the reducing agent the oxidizing agent oxidized. the electron donor, two of these.		> 2CsCl,	Cl ₂ is:						
23.		nsider four 1-L flask and Flask D contain flask A flask B flask C flask D all contain the sam	is O ₂	gas. Which con	ntains the				ains NO ₂ ga	s, Flask C cont	ains N ₂

24.	For a)	which gas	s do the n		ules have Cl ₂	the highe		rage v CH ₄	-	25°C? dj) 1	NH_3	e)	all gases the same
25.	Pre a) b) c) d) e)	Its pressu Its pressu Its pressu The num	are would are would are would aber of mo	decr incre hold oles o	ease ease.	would de	crease					eased while i	ts volume	decreased.
26.	tem	gas sample aperature a 309 K						·		f volum ď		then the temp 294 K	erature is	21.6°C. Determine the 326 K
27.	Cal	culate the		f nitro	ogen at ST		,			·			,	1.60 g/L
28.									are. If the same amount					
29.		5.2 x 10 ⁶ 5.2 x 10 ⁶ 3.6 x 10 ⁶ 3.6 x 10 ⁶	above rea ² kJ are re ² kJ are al ² kJ are re	ction clease osorb clease osorb	, what ended. ed. ed. ed. ed.					noles of	me	thane react?		
30.	Hova)	w many f	orbitals h	ave th	ne value <i>n</i> 1	= 3?	c)	3		ď) 5	5	e)	7
31.	Ho a)	w many el 2	ectrons in	an a b)	tom can h	ave the o		m nun	n = 1	3, <i>l</i> = d		10	e)	18
32.	a) b) c) d) e)	n 1 3 2 4 4 4	following 1 1 0 1 3 2	$m_{(l)} \ 0 \ 0 \ -1 \ -2 \ 0$,	n _(s) /2 //2	am nui	mbers	is not allo	owed?				
33.		nich of the Mg Cl S Ca Na					largest	t first i	onization	energy'	?			

34.	 A fluoride ion is isoeled a) a sodium ion b) a chloride ion c) an oxygen atom d) two of the above e) none of the above 	ctronic with which of	the following?			
35.	The electron configurate a) [Ar]4s ²	tion of Ti ⁺² is b) [Ar]4s ¹ 3d ¹	c) [Ar]3d ²	d) $[Ar]4s^23d^2$	e)	none of these
36.	An element has the elec a) nonmetal	etron configuration [Ki b) actinide	c) metal	nt is a(n) d) lanthanide	e)	transition element
37.	All halogens have the fo	following number of value b) 3	alence electrons: c) 5	d) 7	e)	none of these
38.	Fe has that is (are a) 1 electron	b) unpaired in its d orb b) 2 electrons	itals. c) 3 electrons	d) 4 electrons	e)	None of these.
39.	Consider the following I. Al $<$ Si $<$ P $<$ S II. Be $<$ Mg $<$ Ca $<$ III. I $<$ Br $<$ Cl $<$ F IV. Na ⁺ $<$ Mg ²⁺ $<$ A	S Sr				
	Which of these give(s) a a) I	a correct order for the b) II	radii of the atoms or ion c) III	as? d) IV	e)	II, IV
40.	For the elements Rb, F, a) Rb < F < O b) Rb < O < F c) O < F < Rb d) F < Rb < O e) None of these	, and O, the order of i	ncreasing electronegativ	ity is:		
41.	Which of the following a) HCN, NO ₂ , Ca(NC) b) PCl ₅ , LiBr, Zn(OF) c) KOH, CCl ₄ , SF ₄ d) NaH, CaF ₂ , NaNH e) CH ₂ O, H ₂ S, NH ₃	O_3) ₂ I_1) ₂	nic compounds?			
42.	Which of the following a) HCl	molecules does not hab) CO	c) NCl ₃	d) BCl ₃	e)	All have a dipole moment
43.	Which of the following a) Ca ²⁺	has the smallest ionic b) Cl ⁻	radius? c) Li ⁺	d) O ²⁻	e)	$\mathrm{Be^{2+}}$
44.	Select the correct molec a) tetrahedral	cular geometry for OF b) linear	c) trigonal planar	d) bent	e)	none of these
45.	 Which one of the followa a) The heat of vaporize b) The normal boiling c) The viscosity of a lead d) The heat of fusion. e) The vapor pressure 	zation. g temperature. liquid.	trength of the attractive	intermolecular forces in	creases?	

	I. Cl ₂ II. HF III. Ne IV.	KNO ₂ V. CCl ₄								
	a) I, III, V b) I, II, III c) II, IV	d) II, V e) III, IV, V								
47.	to be:	•								
	a) I ₂ b) NaCl c) CO ₂	d) H ₂ O e) Cu								
48.	48. A certain substance has the phase diagram shown below. At which liquid?	of the following values of T and P is the substance a pure								
	a) $T = 8^{\circ}\text{C}$, $P = 1$ atm b) $T = 10^{\circ}\text{C}$, $P = 0.5$ atm c) $T = 70^{\circ}\text{C}$, $P = 1.2$ atm d) $T = 80^{\circ}\text{C}$, $P = 1$ atm e) $T = 10^{\circ}\text{C}$, $P = 1$ atm	10 70								
49.	49. Rank the following compounds according to increasing solubility in I. $CH_3-CH_2-CH_2-CH_3$ II. $CH_3-CH_2-O-CH_2-CH_3$ III. CH_3-CH_2-OH	T(°C) water.								
	a) I < II < III	d) $III < I < II$ e) No order is correct.								
50.	a) the temperature to cause boiling must be great enough to boil inb) the solute particles lower the solvent's vapor pressure, thus required the solute particles raise the solvent's vapor pressure, thus required	 a) the temperature to cause boiling must be great enough to boil not only the solvent but also the solute. b) the solute particles lower the solvent's vapor pressure, thus requiring a higher temperature to cause boiling. c) the solute particles raise the solvent's vapor pressure, thus requiring a higher temperature to cause boiling. d) the solute increases the volume of the solution, and an increase in volume requires an increase in the temperature to reach the boiling point (derived from PV = nRT). 								
QUE	QUESTIONS 51 THROUGH 75 COUNT TWO POINTS EACH.									
51.	51. It is estimated that uranium is relatively common in the earth's crus 1000 kg. At this concentration, what mass of uranium is present in a) 4 x 10 ⁻⁹ grams b) 4 x 10 ⁻⁶ grams c) 4 x 10 ⁻⁶ grams	1.0 mg of the earth's crust?								
52.	52. A piece of indium with a mass of 16.6 g is submerged in 46.5 cm ³ to 48.6 cm ³ . The correct value for the density of indium from thes									
	a) 0.34 g/cm^3 b) 0.36 g/cm^3 c) 2.8 g/cm^3	d) 2.9 g/cm^3 e) 7.9 g/cm^3								
53.	53. Convert 4301 mL to qts. (1 L = 1.06 qt) a) 4559 qts b) 4.058 qts c) 4058×10^{-3} c	ts d) 4058 qts e) 4.559 qts								
54.	54. Suppose the reaction $Ca_3(PO_4)_2 + 3H_2SO_4> 3CaSO_4 + 2H_3PO_4$ of H_2SO_4 . How much phosphoric acid will be produced? a) 65.0 g b) 50.0 g c) 112 g	is carried out starting with 103 g of $Ca_3(PO_4)_2$ and 75.0 g d) 32.5 g e) 97.6 g								
55.	55. Phenol is a compound that contains 76.57% carbon, 6.43% hydroge a) CHO b) CH ₂ O c) C ₃ H ₃ O	n, and 17.0% oxygen. The empirical formula of phenol is d) C_2HO e) C_6H_6O								
56.	56. Gallium consists of two isotopes of masses 68.95 amu and 70.95 at What is the average atomic mass of gallium?	mu with abundances of 60.16% and 39.84%, respectively.								

c) 71.95

b) 70.15

a) 69.95

d) 69.75

e) 69.55

In which of the following groups of substances would dispersion forces be the only significant factors in determining boiling

57.	Iron is produced from	2C(s	by the reactions: $S_1 + O_2(g) \longrightarrow 2$ $O_3(s) + 3CO(g) \longrightarrow 2$			(g)					
	How many moles of O										
	a) $0.5 \text{ mole } O_2$	b)	$0.75 \text{ mole } O_2$	c)	1.0 mole O ₂	d)	1.5 mole O ₂				
58.	Consider the fermentat	ion re	action of glucose:	C	₆ H ₁₂ O ₆	$> 2C_2H_5C$	OH + 2CO ₂				
	A 1.00-mole sample of percent yield of C ₂ H ₅ O		O ₆ was placed in a	vat	with 100 g of ye	east. If 46	grams of C ₂ F	I ₅ OH were	obtained, what was the		
	a) 50. $\%$	b)	56%	c)	100%	d)	42%	e)	none of these		
59.	How many grams of so sodium acetate?	odium	acetate trihydrate,	Na($C_2H_3O_2 \cdot 3H_2O$	are neede	ed to prepare	350. mL o	f a 0.250 M solution of		
	a) 0.972 g	b)	7.18 g	c)	9.10 g	d)	11.9 g	e)	87.5 g		
60.	A 5.00 g sample of an u What is the percentage				res 70.90 mL of	0.2010 M	AgNO ₃ to pre	cipitate all	of the chloride as AgCl.		
	a) 50.6%	b)	10.1%	c)	1.43%	d)	20.2%	e)	none of the above		
61.	What mass of NaOH is a) 1.2 g	-	red to completely r		ralize with 25.0 at 2.4 g		M H ₂ SO ₄ ? 3.5 g	e)	none of these		
62.	Given the following ox answer the following quantum of the following ox answer the following quantum of the following qua	uestio	n: The coefficient f	or v	vater in the balar	nced react	ion is	2 ,			
	a) 1.	b)		ŕ	5.	d)		e)	none of these		
63.	When 0.72 g of a liquid the gas is CH_2 . What is	s the i	nolecular formula	of th	ne gas?				•		
	a) CH ₂		C_2H_4		C_3H_6		C_4H_8	e)			
64.	A sample of chlorine gas prepared at 15°C and 740. torr has a volume of 5.10 L. Calculate the volume of this sample of chlorine gas at standard conditions of temperature and pressure.										
	a) 6.41 L		4.71 L		5.89 L	d)	11.41	e)	2.97 L		
65.	What volume is occupied a) 1.71 l		19.6 g of methane 18.9 L		I₄) at 27°C and 1 27.7 L		302 L	e) not en	nough data to calculate		
66.	A gaseous mixture cont CO ₂ ?	taining	g 1.5 mol Ar and 3	.5 n	nol CO ₂ has a tot	tal pressur	e of 7.0 atm.	What is the	ne partial pressure of		
	a) 1.8 atm	b)	2.1 atm	c)	3.5 atm	d)	4.9 atm	e)	2.4 atm		
67.	You have a 28.2-g sample temperature of the met specific heat capacity o	al and	water is 31.0°C.	Ass	uming no heat l	oss to the	surroundings				
	a) 0.335 J/g°C	b)	0.98 J/g°C	c)	1.1 J/g°C	d)	1.4 J/g°C	e)	none of these		
68.			$O_2(g) \longrightarrow 2CuO$ Cu(s) + CuO(s)	(s)	$\Delta H^{\circ} = -144 \text{ k}$ $\Delta H^{\circ} = +11 \text{ k}$						
	Calculate the standard (a) -166 kJ	_	py of formation of -299 kJ		O(s). +299 kJ	d)	+155 kJ	e)	-155 kJ		

69.				ylene, $C_2H_2(g)$, at 25° espectively. Calculat			this	temperature, $\Delta H_{ m f}^{\circ}$ va	lues	for $CO_2(g)$ and $H_2O(\ell)$
	a)	2376 kJ/mol	b)	625 kJ/mol	c)	227 kJ/mol	d)	-625 kJ/mol	e)	none of these
70.	Wh	ich of the following	is a	valid Lewis structure	e fo	r the nitrite ion, NO ₂	?			
	,	· . Nī		es m NI m		. NT . m		n Ni n		
	a)	. 0 0.	b)	(0.0.0)	c)		d)	[:0,.0:]	e)	
71.	Hov	w much energy is ne	eded	to convert 64.0 gran	ns (of ice at 0.00°C to wa	ter a	at 75.0°C?		
	specific heat (ice) = $2.10 \text{ J/(g}^{\circ}\text{C})$ specific heat (water) = $4.18 \text{ J/(g}^{\circ}\text{C})$ heat fusion = 333 J/g									
	b)	10.1 kJ		t of vaporization = 2 20.7 kJ		6 J/g 31.4 kJ	d)	41.4 kJ	e)	65.8 kJ
70			Í		ĺ		ŕ		,	
72.		olution of hydrogen 7.94 M		xide is 30.0% H ₂ O ₂ 8.82 M		mass and has a density 9.79 M		1.11 g/cm ³ . The mo 0.980 M	-	
	aj	7.94 WI	U)	0.02 WI	C)	9.79 WI	u)	0.960 W	e)	none of these
73.	Calc 20°	culate the molality of C. At 20°C the dens	C ₂ H sity c	₅ OH in a water solut of C ₂ H ₅ OH is 0.789 §	ion g/m	that is prepared by mi L and the density of w	ixinį vater	g 50.0 mL of C_2H_5Ol is 1.00 g/mL.	H wi	th 100.0 mL of H ₂ O at
		0.086 m		0.094 m		1.24 m		8.56 m	e)	none of these
74.	A 5	.50-gram sample of a	com	pound as dissolved i	n 2	50. grams of benzene.	The	e freezing point of thi	is so	lution is 1.02°C below

that of pure benzene. What is the molar mass of this compound? (Note: K_f for benzene = 5.12°C/m)

Before the solution was prepared, the container was rinsed with solvent and not dried.

c) 220.g/mol

The molar mass of a solid as determined by freezing point depression is 10% higher than the true molar mass. Which of the

d) 44.0 g/mol

none of these

b) 110.g/mol

following experimental errors could not account for this discrepancy?

More than the recorded amount of solvent was pipetted into the solution.

The solid dissociated slightly into two particles when it dissolved.

22.0 g/mol

b)

c)

d)

e)

Not all the solid was dissolved.

Some solid was left on the weighing paper.